Propiedades relacionales de las redes de colaboración y generación de conocimiento científico: ¿Una cuestión de tamaño o equilibrio?


  • África Villanueva-Felez Instituto de Gestión de la Innovación y del Conocimiento (INGENIO) - Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia (CSIC-UPV)
  • Ana Fernández-Zubieta Instituto de Estudios Sociales Avanzados- Consejo Superior de Investigaciones Científicas (IESA-CSIC)
  • Davinia Palomares-Montero Facultad de Filosofía y Ciencias de la Educación. Universidad de Valencia (UVEG)


Palabras clave:

Redes individuales, redes organizativas, científicos, nanotecnología, producción académica


El artículo analiza la influencia de las redes de los investigadores en la cantidad y calidad de su producción de conocimiento científico, con datos obtenidos de un cuestionario, cumplimentado por 191 investigadores/académicos españoles especializados en nanotecnología. Se consideran las redes que los investigadores establecen con otros individuos y organizaciones y se examina el efecto de las propiedades relacionales de las redes de colaboración (grado de incrustación y heterogeneidad nodal) en la producción científica, teniendo en cuenta el tamaño de la red. Se observa que el equilibrio en las redes personales y organizativas explica más la cantidad y la calidad de la producción científica que el tamaño de las redes. Las redes personales equilibradas en su fuerza y su diversidad geográfica facilitan la producción científica y, en su aspecto geográfico, su calidad. Las redes organizativas equilibradas en su diversidad institucional, al contrario que en su dimensión geográfica, también facilita la cantidad de producción.


Los datos de descargas todavía no están disponibles.


Boorman, B. (1975). A combinational optimization model for transmission of job information through contact networks. Bell Journal of Economics, vol. 6 (1), 216-249.

Bourdieu, P. (1986). The forms of capital. En: Richardson, J. G. (editores) Handbook of theory and research for the sociology of education. Greenwood; New York (241–258).

Burt, R. S. (1992). Structural Holes: The Social Structure of Competition. Cambridge; Harvard University Press, p. 313.

Burt, R. S. (1997). The contingent value of social capital. Administrative Science Quarterly, vol. 42 (2), 339-365.

Burt, R. S. (2001). Structural Holes Versus Network Closure as Social Capital. En: Lin, N.; Cook, K.; Burt, R. S. (editores) Social Capital: Theory and Research. Sociology and Economics: Controversy and Integration series. Aldine de Gruyter; New York (31–56).

Callon, M. (1986). Some elements of a sociology of translation: domestication of the scallops and the fishermen of St Brieuc Bay. En: Law, J. (editor) Power, action and belief: a new sociology of knowledge? London; Routledge (196-223).

Callon, M.; Law, J.; Rip, A. (1986). Mapping the dynamics of science and technology: sociology of science in the real world. Basingstoke; Palgrave Macmillan, p. 242.

Carayol, N.; Matt, M. (2006). Individual and collective determinants of academic scientists' productivity. Information Economics and Policy, vol. 18 (1), 55-72.

Coleman, J. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, 95–120.

Coleman, J. (1990). Foundations of social theory. Cambridge MA; Harvard University Press, p. 1014.

Correia, A.; Roldán-Hernández, J. L.; Serena-Domingo, P. A. (2004). Estudios sobre las actividades y necesidades en el área de las Nanociencias/Nanotecnologías. Madrid; FECYT (Ministerio de Educación y Ciencia), p. 109.

Etzkowitz, H.; Leydesdorff, L. (2000). The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations. Research Policy, vol. 29 (2), 109-123.

Gnyawali, D. R.; Madhavan, R. (2001). Cooperative networks and competitive dynamics: A structural embeddedness perspective. The Academy of Management Review, vol. 26 (3), 431-445.

Godin, B.; Gingras, Y. (2000). Impact of collaborative research on academic science. Science and Public Policy, vol. 27 (1), 65-73.

Gordon, M. (1980). A critical reassessment of inferred relations between multiple authorship, scientific collaboration, the production of papers and their acceptance for publication. Scientometrics, vol. 2 (3), 193-201.

Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, vol. 78 (6), 1360-1380.

Granovetter, M. S. (1985). Economic action and social structure: the problem of embeddedness. American Journal of Sociology, 91(3), 481–510.

Gulati, R. (1998). Alliances and networks. Strategic Management Journal (1986-1998), vol. 19 (4), 293-317.

Gulbrandsen, M.; Smeby, J. C. (2005). Industry funding and university professors' research performance. Research Policy, vol. 34 (6), 932-950.

Hullmann, A. (2006). The economic development of nanotechnology: An indicators based analysis. Bruselas; European Commission, DG Research, Unit "Nano S&T - Convergent Science and Technologies", p. 34.

Islam, N.; Miyazaki, K. (2009). Nanotechnology innovation system: Understanding hidden dynamics of nanoscience fusion trajectories. Technological Forecasting and Social Change, vol. 76 (1), 128-140.

Katz, J. S.; Martin, B. R. (1997). What is research collaboration? Research Policy, vol. 26 (1), 1-18.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Chicago; University of Chicago Press, p. 226.

Latour, B. (1987). Science in Action. How to follow scientists and engineers through society. Cambridge; Milton Keynes, Open University Press, p. 274.

Laudel, G. (2001). Collaboration, creativity and rewards: Why and how scientists collaborate? International Journal of Technology Management, vol. 22 (7/8), 762-781.

McFadyen, M. A.; Cannella Jr., A. A. (2004). Social capital and knowledge creation: Diminishing returns of the number and strength of exchange relationships. Academy of Management Journal, vol. 47 (5), 735-746.

McEvily, B.; Zaheer, A. (1999). Bridging ties: A source of firm heterogeneity in competitive capabilities. Strategic Management Journal, vol. 20 (12), 1133-1156.<1133::AID-SMJ74>3.0.CO;2-7

Merton, R. K. (1942). The normative structure of science. En: Merton R. K. (editor) The sociology of science: theoretical and empirical investigations. University of Chicago Press, Chicago (267-280).

Meyer, M.; Libaers, D.; Park, J-H. (2011). The emergence of novel science-related fields: Regional or technological patterns? Exploitation in United Kingdom Nanotechnology. Regional Studies, vol. 45 (7), 935-959.

Meyer, M.; Morlacchi, P.; Persson, O.; Archambault, E.; Malsch, I. (2004). Continuous professional development in emerging technology sectors. SPRU Report for the Engineering and Technology Board, 1-60. SPRU - University of Sussex.

Mulkay, M. (1979). Science and the Sociology of Knowledge. London; Allen & Unwin, p. 144.

National Nanotechnology Initiative. (2002). Small Wonders, Endless Frontiers. Washington, D.C.; National Academy Press, p. 58.

Nowotny, H.; Scott, P.; Gibbons, M. (2001). Re-thinking science. Knowledge and the public in an age of uncertainty. Cambridge; Polity Press, p. 288.

Nowotny, H.; Scott, P.; Gibbons, M. (2003). Introduction: `Mode 2' Revisited: The New Production of Knowledge. Minerva, vol. 41 (3), 179-194.

Ott, I.; Papilloud, C. (2007). Converging Institutions: Shaping Relationships Between Nanotechnologies, Economy, and Society. Bulletin of Science Technology Society, vol. 27 (6), 455-466.

Palmberg, C.; Dernis, H.; Miguet, C. (2009). Nanotechnology: An overview based on indicators and statistics. STI Working Paper 2009/7. Statistical Analysis of Science, Technology and Industry. Paris; OECD/OCDE, p. 112.

Polanyi, M. (1966). The Tacit Dimension. London; Routledge & Kegan Paul, p. 128.

Pravdić, N.; Oluić-Vuković, V. (1986). Dual approach to multiple authorship in the study of collaboration/scientific output relationship. Scientometrics, vol. 10 (5), 259-280.

Reagans, R.; Zuckerman, E. W. (2001). Networks, diversity, and productivity: The social capital of corporate R&D teams. Organization Science, vol. 12 (4), 502-517.

Rigby, J.; Edler, J. (2005). Peering inside research networks: Some observations on the effect of the intensity of collaboration on the variability of research quality. Research Policy, vol. 34 (6), 784-794.

Salerno, M.; Landoni, P.; Verganti, R. (2008). Designing foresight studies for nanoscience and nanotechnology (NST) future developments. Technological Forecasting and Social Change, vol. 75 (8), 1202–1223.

Shannon, C. E.; Weaver W. (1959). The Mathematical Theory of Communication [1949]. Urbana, IL.; University of Illinois Press, p. 144.

Smeby, J.C.; Try, S. (2005) Departmental contexts and faculty research activity in Norway. Research in Higher Education, vol. 46 (6), 593-619.

Stix, G. (2001). Little Big Science. Scientific American, vol. 285 (3), 32-37.

Subramanyam, K. (1983). Bibliometric studies of research collaboration: A review. Journal of Information Science, vol. 6 (1), 33-38.

Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, vol. 42 (1), 35-67.

Villanueva-Felez, A. (2011). El acceso a recursos desde una perspectiva relacional: Un análisis contingente de las características de los vínculos sociales. Tesis Doctoral. Valencia: Universidad de Valencia.

Villanueva-Felez, A.; Molas-Gallart, J.; Escribá Esteve, A. (2013). Measuring personal networks and their relationship with scientific production. Minerva, vol. 51 (4), 465-483.



Cómo citar

Villanueva-Felez, África, Fernández-Zubieta, A., & Palomares-Montero, D. (2014). Propiedades relacionales de las redes de colaboración y generación de conocimiento científico: ¿Una cuestión de tamaño o equilibrio?. Revista Española De Documentación Científica, 37(4), e068.