Characteristics and disparities among sub-specialities: a case study of Biotechnology research teams
DOI:
https://doi.org/10.3989/redc.2011.4.837Keywords:
bibliometric indicators, sub-specialities, assessment, research teams, biotechnologyAbstract
The objective of this work is the study of the characteristics and disparities among the existing sub-specialities within interdisciplinary categories, putting forward the need to identify and assess each one separately. The Web of Science (WoS) databases were examined for the years 2003-2006, in order to explore the possible differences between biotechnology research teams in Madrid according to their specialization profile. This Spanish region has the highest output in biotechnology (27%), a category that interacts with other disciplines, such as microbiology, biochemistry and food science. For this reason, the study of teams includes, in a second analysis, not just the documents in this category, but also publications of the team leaders, regardless of their discipline. With these data, the influence of the specialization on the teams’ characteristics, collaboration patterns and impact is discussed. Three typologies are identified according to subspecialities: a) CORE teams (publishing 50% or more in biotechnology); b) BASIC teams (publishing in biochemistry and other basic disciplines); and c) MEDIUM teams (publishing in food science and other less basic disciplines). By means of statistical tests, significant differences in output and impact were found among them. The article concludes that these disparities should be taken into account when assessing categories of interdisciplinary research such as biotechnology.
Downloads
References
Albert, A.; Granadino, B., y Plaza, L. M. (2007). Scientific and technological performance evaluation of the Spanish Council for Scientific Research (CSIC) in the field of Biotechnology. Scientometrics, 70 (1): 41-51. http://dx.doi.org/10.1007/s11192-007-0103-y
Batagelj, V., y Mrvar, A. (1998). Pajek: a program for large network analysis. Connections (Tor.), 21 (2), 47-57.
Beaver, D. De B. (2001). Refl ections on scientific collaboration (and its study): past, present and future. Scientometrics, 52 (3), 365-377. http://dx.doi.org/10.1023/A:1014254214337
Bordons, M.; Morillo, F.; Fernández, M. T.; Gómez, I.; León, M., y Martín D. (2005). La investigación matemática española de difusión internacional. Estudio bibliométrico 1996-2001. CSIC.
Bordons, M.; Zulueta, M. A.; Cabrero, A., y Barrigón, S. (1995). Identifying research teams with bibliometric tools. En: Koenig, M. E. D. y Bookstein, A. (eds.), Fifth International Conference of the International Society for Scientometrics and Informetrics. Learned Information, Medford.
Börner, K.; Dall’Asta, L.; Ke, W., y Vespignani, A. (2005). Studying the Emerging Global Brain: Analyzing and Visualizing the Impact of Co-Authorship Teams. Complexity, 10 (4), 57-67. http://dx.doi.org/10.1002/cplx.20078
Calero, C.; Buter, R.; Cabello Valdés, C., y Noyons, E. (2006). How to identify research groups using publication analysis: an example in the field of nanotechnology. Scientometrics, 66 (2), 365-376. http://dx.doi.org/10.1007/s11192-006-0026-z
Casper, S., y Murray, F. (2005). Careers and clusters: analyzing the career network dynamic of biotechnology clusters. Journal of Engineering and Technology Management, 22, 51-74. http://dx.doi.org/10.1016/j.jengtecman.2004.11.009
Dalpé, R. (2002). Bibliometric analysis of biotechnology. Scientometrics, 55 (2): 189-213. http://dx.doi.org/10.1023/A:1019663607103
De Nooy, W.; Mrvar, A., y Batagelj, V. (2005). Exploratory Network Analysis with Pajek. Cambridge University Press.
Frenken, K.; Hölzl, W., y de Vor, F. (2005). The citation impact of research collaborations: the case of European biotechnology and applied microbiology (1988-2002). Journal of Engineering and Technology Management, 22, 9-30. http://dx.doi.org/10.1016/j.jengtecman.2004.11.002
Frenken, K.; Ponds, R., y Van Oort, F. (2010). The citation impact of research collaboration in science-based industries: A spatial-institutional analysis. Papers in Regional Science, 89 (2): 351-371. http://dx.doi.org/10.1111/j.1435-5957.2010.00309.x
Glänzel, W., y Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56 (3): 357-367. http://dx.doi.org/10.1023/A:1022378804087
Glänzel, W., y Zhou, P. (2011). Publication activity, citation impact and bi-directional links between publications and patents in biotechnology. Scientometrics, 86 (2): 505–525. IBM SPSS Statistics Base 19 (2010). © Copyright SPSS Inc. 1989, 2010.
Hinze, S., y Grupp, H. (1996). Mapping of R&D structures in transdisciplinary areas: new Biotechnology in Food Sciences. Scientometrics, 37 (2): 313-335. http://dx.doi.org/10.1007/BF02093627
Katz, J. S., y Martin, B. R. (1997). What is research collaboration? Research Policy, 26: 1-18. http://dx.doi.org/10.1016/S0048-7333(96)00917-1
Klein, J. T. (2008). Evaluation of Interdisciplinary and Transdisciplinary Research. American Journal of Preventive Medicine, 35 (2S): S116-S123. http://dx.doi.org/10.1016/j.amepre.2008.05.010 PMid:18619391
Langfeldt, L. (2006). The policy challenges of peer review: managing bias, conflict of interests and interdisciplinary assessments. Research Evaluation, 15 (1): 31-41. http://dx.doi.org/10.3152/147154406781776039
Laudel, G. (2006). Conclave in the Tower of Babel: how peers review interdisciplinary research proposals. Research Evaluation, 15 (1): 57-68. http://dx.doi.org/10.3152/147154406781776048
Leydesdorff, L., y Heimeriks, G. (2001). The Self-Organization of the European Information Society: The Case of «Biotechnology». Journal of the American Society for Information Science and Technology, 52 (14): 1262-1274. http://dx.doi.org/10.1002/asi.1193
McCain, K. (1995). The Structure of Biotechnology R & D. Scientometrics, 32 (2): 153-175. http://dx.doi.org/10.1007/BF02016892
Morillo, F., y De Filippo, D. (2009a). Descentralización de la actividad científica. El papel determinante de las regiones centrales: el caso de Madrid. Revista Española de Documentación Científica, 32 (3): 29-50. http://dx.doi.org/10.3989/redc.2009.3.684
Morillo, F.; Aparicio, J., y Bordons, M. (2009b). Informe sobre la Biotecnología en la Comunidad de Madrid (1999-2002 y 2003-2006). Instituto de Estudios Documentales sobre Ciencia y Tecnología (IEDCYT-CCHS), CSIC, Madrid.
Morillo, F.; Aparicio, J., y Bordons, M. (2009c). The Role of Sub-Specialities in the Assessment of Research Teams. En: Larsen, B. y Leta, J.(eds.). Proceedings of ISSI 2009. 12th International Conference of the International Society for Scientometrics and Informetrics. Río de Janeiro, Brasil.
Morillo, F.; Bordons, M., y Gómez, I. (2003.) Interdisciplinarity in science: a tentative typology of disciplines in research areas. Journal of the American Society for Information Science and Technology, 54 (13): 1237-1249. http://dx.doi.org/10.1002/asi.10326
Noma, E. (1986). Subject classification and infl uence weights for 3,000 journals. Report. Computer Horizons, Inc./CHI Research [datos actualizados a 2007 por The Patent Board, nombre actual de CHI Inc.].
Pérez, C. (2005). Técnicas Estadísticas con SPSS © 12. Aplicaciones al análisis de datos. Pearson Educación, S. A., Madrid.
Porter, A. L.; Schoeneck, D. J.; Roessner, D., y Garner, J. (2010). Practical research proposal and publication profiling. Research Evaluation, 19 (1): 29-44. http://dx.doi.org/10.3152/095820210X492512
Rey-Rocha J.; Garzon-Garcia, B., y Martin-Sempere, M. J. (2006). Scientists’ performance and consolidation of research teams in Biology and Biomedicine at the Spanish Council for Scientific Research. Scientometrics, 69 (2): 183-212. http://dx.doi.org/10.1007/s11192-006-0149-2
Rip, A., y Courtial, J. P. (1984). Co-word maps of Biotechnology: an example of cognitive Scientometrics. Scientometrics, 6 (6): 381-400. http://dx.doi.org/10.1007/BF02025827
Seglen, P. O., y Aksnes, D. W. (2000). Scientific productivity and group size: A bibliometric analysis of Norwegian microbiological research. Scientometrics, 49 (1), 125-143. http://dx.doi.org/10.1023/A:1005665309719
van Raan, A. F. J. (2006). Statistical properties of bibliometric indicators: research group indicator distributions and correlations. Journal of the American Society for Information Science and Technology, 57 (3): 408-430. http://dx.doi.org/10.1002/asi.20284
Vinkler, P. (2000). Evaluation of the publication activity of research teams by means of scientometric indicators. Current Science, 79 (5): 602-612.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.