Experimental approach to the use of objective metrics for estimating chromatic quality in the digitization of graphical documents

Authors

  • Jesús Robledano-Arillo Departamento de Biblioteconomía y Documentación. Universidad Carlos III de Madrid
  • Valentín Moreno-Pelayo Departamento de Informática. Universidad Carlos III de Madrid
  • José Manuel Pereira-Uzal DigitalHeritage

DOI:

https://doi.org/10.3989/redc.2016.2.1249

Keywords:

Document digitization, photography, image quality assessment, machine learning, visual algorithms

Abstract


This work aims to provide a critical examination of different approaches to creating models of automated quality control systems for digital images in digitization projects for photographic heritage collections. After conducting a psychometric experiment with four human experts, we demonstrate that it is not possible to talk about commonly used, simplistic models based on continuous acceptance ranges for colour metrics on an isolated basis. This study demonstrates that a model based on a rule-based, machine-learning system employing metrics (CIE 1976 or CIEDE 2000) along with the colour perceptual attributes of hue, saturation and lightness, emulates the image quality experts with a high degree of efficacy, above 85%.

Downloads

Download data is not yet available.

References

Charrier, C.; Lézoray, O.; Lebrun, G. (2012). Machine learning to design full-reference image quality assessment algorithm. Signal Processing: Image Communication, 27, 209-219. http://dx.doi.org/10.1016/j.image.2012.01.002

Dormolen, H. (2012). Metamorfoze Preservation Imaging Guidelines. Test Version 1.0, January 2012. https://www.metamorfoze.nl/sites/metamorfoze. nl/files/publicatie_documenten/Metamorfoze_ Preservation_Imaging_Guidelines_1.0.pdf [29/12/2014].

Engeldrum, P. G. (1995). A framework for image quality models. Journal of Imaging Science and Technology, vol. 39 (4), 312-318.

Engeldrum, P. G. (2004). A Theory of Image Quality: The Image Quality Circle. Journal of Imaging Science and Technology, vol. 48 (5), 446-456.

FADGI- Still Image Working Group. (2010). Technical Guidelines for Digitizing Cultural Heritage Materials: Creation of Raster Image Master Files. For the Following Originals - Manuscripts, Books, Graphic Illustrations, Artwork, Maps, Plans, Photographs, Aerial Photographs, and Objects and Artifacts. http://www.digitizationguidelines.gov/guidelines/ FADGI_Still_Image-Tech_Guidelines_2010-08-24. pdf [20/04/2014].

Fairchild M. D. (2004). Color Appearance Models: CIECAM02 and Beyond. IS&T/SID 12th Color Imaging Conference. Tutorial T1A, 11/9/04. http:// www.cis.rit.edu/fairchild/PDFs/AppearanceLec.pdf [20/05/2014].

Frey, F.; Reilly, J. (1999). Digital Imaging for Photographic Collections: Foundations for Technical Standards. Rochester, NY: Image Permanence Institute.

Frey, F.; Reilly, J. (2006). Digital Imaging for photographic collections: foundations for technical standards. (2ª ed.) Rochester, NY: Image Permanence Institute.

ISO 20462-1:2005 (2005a). Photography Psychophysical experimental methods for estimating image quality —Part 1: Overview of psychophysical elements.

ISO 20462-2:2005 (2005b). Photography -- Psychophysical experimental methods for estimating image quality — Part 2: Triplet comparison method.

ISO 11664-4:2008 (CIE S 014-4/E:2007) (2007). Colorimetry -- Part 4: CIE 1976 L*a*b* Colour space.

ISO 12646:2008 (2008). Graphic technology -- Displays for colour proofing -- Characteristics and viewing conditions.

ISO 3664:2009 (2009). Graphic technology and photography - Viewing conditions.

ISO 20462-3:2012 (2012). Photography -- Psychophysical experimental methods for estimating image quality — Part 3: Quality ruler method.

Lee, Hsien-Che. (2005). Introduction to Color Imaging Science. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511614392

Luo, M. R.; Cui, G.; Rigg, B. (2001). The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Research & Application, vol. 26 (5), 340–350. http://dx.doi.org/10.1002/col.1049

Martens, J.B. (2002). Multidimensional modeling of image quality. Proceedings of the IEEE, vol. 90 (1), 133-153. http://dx.doi.org/10.1109/5.982411

Martínez, C.; Mu-oz, J. (2002). Digitalización del patrimonio fotográfico e investigación: la metodología empleada para la reproducción digital de la colección de placas de vidrio de colodión húmedo, custodiada en el Museo Nacional de Ciencias Naturales -Consejo Superior de Investigaciones Científicas- (MNCN-CSIC). Actas de las Primeras Jornadas sobre Imagen, Cultura y Tecnología, pp. 99-120. Getafe, Espa-a: Universidad Carlos III de Madrid.

Nationaal Archief (2010). Digitisation of photographic materials. Guidelines. September 2010. http:// www.nationaalarchief.nl/sites/default/files/docs/ guidelines_digitisation_photographic_materials.pdf [19/11/2014].

Pellacini, F.; Ferwerda, J.A.; Greenberg, D.P. (2000). Toward a psychophysically-based light reflection model for image synthesis. Proc. ACM SIGGRAPH 2000, pp. 55-64. http://dx.doi.org/10.1145/344779.344812

Puglia, S.; Reed, J., & Rhodes, E. (2004). U.S. National Archives and Records Administration (NARA) Technical Guidelines for Digitizing Archival Materials for Electronic Access: Creation of Production Master Files – Raster Images. http://www.archives.gov/preservation/technical/ guidelines.pdf [14/11/2014].

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, CA. PMCid:PMC1554917

Robledano Arillo, Jesús (2011a). Mejora del rango dinámico en la digitalización de documentos desde una perspectiva patrimonial: evaluación de métodos de alto rango dinámico (HDR) basados en exposiciones múltiples. Revista Espa-ola de Documentación Científica, vol. 34 (3), 357-384. http://dx.doi.org/10.3989/redc.2011.3.816

Robledano Arillo, J. (2011b). Twenty-five years of digital conversion. Current situation. En: Internacional Conference. Thirty Years of Photographic Conservation Science. Logro-o (La Rioja). Spain. June, 2011.

Ruiz, P. (2006). Sistemas de control de calidad para la digitalización. Actas de las IX Jornadas Antoni Varés, Imatge i Recerca, pp. 61-84. Girona, Espa-a: CRDI.

Still Image Working Group (2010). GAP Analysis. Updated 01/12/2010. http://www. digitizationguidelines.gov/guidelines/Gap_ Analysis.pdf [19/11/2014].

Williams, D. (2002). Image quality metrics. RLG Diginews, vol. 4 (4). http://www.worldcat.org/ arcviewer/1/OCC/2007/08/08/0000070511/ viewer/file1806.html [19/12/2014].

Williams, D. (2003). Debunking of Specsmanship: Progress on ISO/TC42 Standards for Digital Capture Imaging Performance. IS&T's 2003 PICS Conference, pp. 77-81.

Williams, D. (2010). Imaging Science for Archivists. http://www.digitizationguidelines.gov/guidelines/ Digital_Imaging_Science.ppt [28/11/2014].

Witten, I. H.; Frank, E. (2005). Data Mining. Practical Machine Learning Tools and Techniques, 2th Ed. San Mateo, CA: Morgan Kaufmann Publishers.

Zhou Wang; Bovik, A.C.; Ligang Lu (2002). Why is image quality assessment so difficult? Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on (Volume: 4), p. IV-3313 - IV-3316. http://dx.doi.org/10.1109/icassp.2002.5745362

Published

2016-06-30

How to Cite

Robledano-Arillo, J., Moreno-Pelayo, V., & Pereira-Uzal, J. M. (2016). Experimental approach to the use of objective metrics for estimating chromatic quality in the digitization of graphical documents. Revista Española De Documentación Científica, 39(2), e128. https://doi.org/10.3989/redc.2016.2.1249

Issue

Section

Studies